CS-200
Computer Architecture

Part 4a. Instruction Level Parallelism
Performance

Paolo lenne

<paolo.ienne@epfl.ch>

Performance (vs. VAX-11/780)

Remember?

100000
Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz)
Intzl Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz)
Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz) 24,129
Intel Core Duo Extreme 2 cores, 3.0 GH~ /.’:s:;r.;w
Intel Cnre 2 E:n:treme 2 cores, 2.9 GHz “19
A -0 .
Intel DBSOEMYR mathedoard (3,
~50% / year:
I
P
o processor
00—
A performance
Digital Alphastation 5/300, 300 MHz
Digital Alphastation 4/266, 266 MHz
100 I IBM POWERﬂatmn 100, 150 I'l.I'IHz
D|grtal 3000 A}(PIECIU ‘IECI I"."IHz
HP 2000/750, 66 MHz
IBM RS8000/540, 30 MHz ~) .
MIPS M2000, 25 MHz ZOA’ / year'
MIPS MA20, 16.7 MHz
1O e g s 677 T technology
VaX a700, 22 MHz — aQ
= (= transistor speed)
AX-11/780, EMHz ~_.-""
1.5, VAX-11/785

! I I I I I I T I
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996

I I I I I I T
1998 2000 2002 2004 2006 2008 2010 2012

Source: Hennessy & Patterson, © MK 2011

So Far about Performance...

* Different parts of a system do not benefit equally from
manufacturing technology advances

— Memories are “slower and slower” = Caches

 We have done nothing to speed-up the processor itself

What is “Performance”?

* Processor frequency?

— Is it better an Intel Core i7-7700K at 4.2 GHz or an AMD Ryzen 5 5600X at 3.7 GHz?
And how much better the best one is?

* Memory speed? Cache efficiency?

— |Is it better to have 8 MiB of 4-way set-associative cache or 16 MiB of direct
mapped cache?

— Is it better to have three levels of overall smaller caches or two levels of overall
bigger caches?

[We need a metric! J

Elapsed Time, CPU Time,...

None of the above matters in itself
 What matters is how long it takes to perform a job a user needs!

OS command to

inquire about execution time K
A N 7

My job

A

1110]icvme100> time latex mypaper >& /dev/null
[6.79uf0.17s|0:01.20|80.0%

(1R]icviR100> “k\\~‘>
— Elapsed Time: 1.20s after | started it, my job was completed
System CPU Time: The processor has spent 0.17s executing

instructions of the operating system on behalf of my program

User CPU Time: The processor has spent 0.79s executing
instructions of my program (Latex)

Elapsed Time, CPU Time,...

1110]icvme100> time latex mypaper >& /dev/null
0.79u 0.17s 0:@1.2@'8@.@%'6

[111]icvmR100> \ .
80% of the Elapsed Time (= 0.96s/1.20s)

has been spent on my job:
system |/O, other jobs, other users,...

User CPU Time + System CPU Time # Elapsed Time:
The processor has spent 0.96s executing for me
but the result took 1.20s to become ready

We are interested in

Elapsed Time on an Unloaded System

Often simply “Execution Time” for brevity...

Relative Performance

* Speedup
— How faster system X is compared to system Y
Performance, Execution Time,

Speedup = = : :
Performance, Execution Time,

e Common Performance Indices

— Speedups of systems compared to a single standard system
— SPEC CPU, Geekbench, Cinebench, and LinPack HPL, EEMBC (“Embassy”) CoreMark

\ The classic CPU benchmark J
Dedicated to embedded processors

Relate Performance
to Hardware Implementation

In hardware, our measure of time is the clock period or cycle
We are often interested to relate the execution time to this “hardware quantum’

Cycles per Instruction (CPI)
— Average number of cycles per instruction executed

CPI = becution Time (Total Instruction Count)
Clock Period

)

Instructions per Cycle (IPC) € 1 / CPI

— Average instructions executed per cycle
— Normally below unity, unless the processor executes several instructions in parallel

Improving Performance?

* Performance being 1/Execution Time, rewriting the definition of CPl and IPC:

Implement the processor
1 in a fast technology ©

Performance = : — =
Execution Time

—]FCIOCk — []FCIOCk][]P C]
[Instruction CountWCPI| Instrifction Count

Execute several
instructions in parallel ©

Use fewer complex instructions (CISC)?
But then we need more cycles per
instruction or a slower clock... ®

Make instructions simple so that we can
have less CPI or a faster clock (RISC)?
But then we need more instructions for the
same job... ®

Many Other Considerations
Influence the Performance

A few random examples:

* Instruction Count depends also from the compiler

— It is more important to have an instruction-set which a compiler can use very effectively (best
instructions for the required job) rather than a “reduced” or a “complex” instruction-set—otherwise
the instruction count will be larger than needed...

 CPIdepends on the cache performance

— If the overall code size grows, the cache will be less effective (more misses)...

* Very fast clock cycles will require more often instructions from the memory

— Performance of the cache becomes more critical...

What to Improve to Increase Performance?

 Amdahl’s Law (law of diminishing returns)

— The performance enhancement possible with a given improvement is limited by the amount the
improved feature is used

e Typical software situation:

— If a program spends 20% of the time in subroutine X, the maximum reduction in execution time one
can get from optimising X is 20%, that is a speedup of 1/(1 - 0.2) = 1.25x

* In a processor:

— If the instruction Y is used 0.1% of the time, is it worth to make it faster? It is probably better to look
for the instruction which is used 20% of the time...

[Look for where most of the time goes! }

Benchmarks

 Performance indices such as SPEC CPU, Geekbench, Cinebench, and
LinPack HPL, EEMBC (“Embassy”) CoreMark need a precise definition of

the user job(s) to run

* Serious benchmark suites are collections of large and representative user
programs spanning all areas of typical use, often agreed between
manufacturers

 They do not only define the programs (in C, C++, FORTRAN, Java), but also
how to compile them, what data to run them on, etc.

SPEC CPU2006 Integer

CPU2000 CPU2006

Benchmark Description Integer Lng RT | Integer Lng RT

GMU C compile 176.gcc C | 1,100] 403.gcc C 8,050

Manipulates strings & prime numbers in Per language 253 peribmk | C 1,800 | 400, peribench C 9,766 5
Minimum cost network flow solver (combinatorial optimization) 181.mcf C 1,800 429.mcf C | 2,120 I
Data compression utikity 256.bzip2 C | 1,500 401.bzip2 C 5,644 0
Data compression utikty 164.gzip C | 1,400 2
Video compression & decompression 464 h264ref C 22 235 S
Artificial intelligence, plays game of Chess 186.crafty C | 1,000|458.sjeng C 1214 ®
Artificial intelligence, plays game of Go 445 gobmk C 10,489 .
Artificial intelligence used in games for finding 20 paths across terrains 473.astar C++ 7017 S
Matural language processing 197 parser C 1,800 &
XML processing 483.xalanchmk | C++ | 6869 5
FPGA circuit placement and routing 175.vpr C 1,400 g
EDA place and route simulator 300, twolf C | 3,000 | 8
Search pene sequence 456.hmmer C 9,333 Q
Ray tracing 252 eon C++| 1,300 | S
Computational group theory 254 gap c | 1,100 =
Database program 255.vortex | C | 1,900 | g
Library for simulating a quantum computer 462 kbguantum | C 20,704 g
Discrete event simulation 471.omnetpp C+s | 6270 n

hours | 5.3 | 19,100 hours | 36.6 131,638

* Reference Time (RT) measured on a Sun Ultra 5 + 300MHz UltraSPARC Il +
256KB L2 cache = 100 SPEC2000

* Note the complexity of the benchmark: 36.6 hrs and 88.3 hrs of runtime
(on a relatively old machine) for Int and FP respectively

SPEC CPU2006 Floating Point

CPLZ000 CPLZ 00
Benchmark Description Floating Pt | Lng Floating Pnt | Lng | RTime
: W F7r
'I.-'Hmty «!1 dnstnbut-nn of pollutants l:az-ed on temperature, wind 307 apsi Fi7 2,600 I~
81 wrf L ofF | 11218 S
Physics, partiche accelerator model 200 sistrack | FF7 1,100 ~
Parabolic/eliptic partial differential equations 173apps | F77 | 2,100 I o
Multi-grid solver in 3D potential fleld 172mgrd | F77 | 1,800 £
Ceneral relativity, solves Einstein evolution eguations 436.cactusADM. | C/F | 11927 3
Computational electromagnetics (sohres Maxwell equations in 309 459, CemsFOTD F 10,583 ©
Quantum chromodynamics 168 . wupwise | F77 1,600 | .
Quanium chromodynamics, gauge field generation with dynamical guarks 433.milc L. 9180 9
Fluid dynamics, analysis of oscillatory instability 178.galgel [F90 | 2,900 | 2
Fluid dynamics, computes 30 transonic transient laménar visoous flow 410, bwaves F 13,592 <
Computational fluid dynamics for smulation of ical phenomena 434 .zeusmp | F 9,096 g
Fluid dynamics, large eddy simulations with Bnear-eddy mode in 3D 437 Jeslic3d F 9358 o
Fluid dynamics, simulates incompressible fluids in 30 470 om | € | 1378 o
Molecular dynunfr_f. Eimliatlun: baszed on nEwtmlan Equatlms of maotian) 435. gromacs CSF FA32 8‘
Zio wlates large 5 444 namd _Cis | B0 S
Cunq:utatl-unal che.m:ﬁln' 188.ammp [= 2,200 =
Quantum chemistry package (object-oriented design) 465 tonto | £ 9,822 g
Quantum chemistry, wide range of self-consistent field calculations _ 416.gamess F 19,575 | 5
Comgputer vision, face recognition 187 facerec | F90 | 1,900 | 3
Speech recognition system 482 sphinx3 C 19 528
3D graphics library 177.mesa C 1,400 |
Meural network simulation (adaptive resonance theory) 179.art C 2,600
Earthquake modeling (finite element simulation) 183.equake | C 1,300 |
Crash modeling (finite elerment simulation) 191 .tma3d Fa0 2,100
Nurmber theary (testing for primes) 1890ucas | F90 | 2,000 I
Structural mechanics (finite elements for linear & nonlinear 30 structures) 454 calewlix CSF B 250
Finite elernent analysis (program library) 447 deall | C4++ | 11488
Linear pmgmmlng npﬂml:a.tl-nn imllma.d plmnlng. aIrIH't rnu:-dels} 450, s0pkex Co# B 338
Image ray fra : : afstra 453 povray | Cte | 5346
hours | 80 | 28700 hours 51| 186,164
hours |13.3 | 47.810 hours | 88.3|317.802

SPEC CPU2017 Speed and Rate

SPECspeed

SPECspeed | SPECrate | Language | Application
&00.perlbench s | 500.perlbench r | C Perlinterpreter 5
602.gcc_s 502.gcc_r C Gnu C compiler 5
605.mcf s 505.mcf r C Route planning S
e20.0mnetpp s S520.omnetpp r | C++ Discrete event simulation—computer NAW o
623 .xalancbmk s| 523.xalancbmk r| C++ HML-to-HTML conversion via XSLT 2
625.x%264 s h25.x26ed r C Video compression Q
631.deepsieng s | 531.deepsiene r | C++ Al: aloha-beta treesearch (Chess) 5
641 leela s 541 0eela r C++ Al: Monte Carlo tree search (Go) v
<
648.exchange? s| 548.exchange2 r| Fortran Al: recursive solution generator (Sudoku) =
657 %z 5" BETXI T C Generaldata compression ©
603.bwaves s 503.bwaves r Fortran Explosion modeling £
607 cactuBsSSN s| 507.cactuBSSN r| C++, C. Fortran | Physics: relativity 8_
Not applicablet | 508.namd r C++ Molecular dynamics 2
Mot applicablet 510_parest r C++ Biomedical imaging: optical tomography 5
Not applicablet | 511.povray r C++,C Ray tracing a
619.1bm s 519.lbm r C Fluid dynamics g
621.wrf_s EX1wrf r Fortran, C Weather forecasting s
Mot applicable t 526 blender r C++, C 3D rendering and animation o
627 camd s 537.camd r Fortran. C Atmosphere modeling §
628.pop2 < Mot applicablet | Fortran, C Wide-scale ocean modeling (climate level) ..
638.imagick s | 538.imagick r | C Image manipulation 3
&4 nab s 544 nab r C Maolecular dynamics 3
&40 fotonik3d s | 549 fotonik3d r | Fortran Computational electromagnetics wv
654.roms_s 554.roms_r Fortran Regional ocean modeling

SPECrate

Measures the completion time
of a task (latency test)

Measures the number of tasks performed in
the unit of time (throughput test)

SPEC CPU2000 Example

Complete and Complex Programs

Benchmark Language KLOC Resident size (Mbytes) Virtual size (Mbytes) Description S

SPECINt2000 S

164.gzip G 7.6 181 200 Compression w

175.vpr C 13.6 50 h5.2 FPGA circuit placement and routing 6

176.gcc G 193.0 155 158 C programming language compiler -

181.mcf C 1.9 190 192 Combinatorial optimization 9

186.crafty 0 20.7 2.1 4.2 Game playing: Chess a

197.parser C 10.3 37 62.5 Word processing g

252.eon C++ 34.2 0.7 3.3 Computer visualization o

253.perlbmk G 79.2 146 159 Perl programming language g

254.0ap C 62.5 193 196 Group theory, interpreter 5

255.voriex C 54.3 72 81 Object-oriented database 8

256.bzip2 G 3.9 185 200 Compression

300.twolf C 19.2 1.9 41 Place and route simulator

SPECip2000

168.wupwise F77 1.8 176 177 Physics: Quantum chromodynamics Lines of source x 1000
171.swim F77 0.4 19 192 Shallow water modeling tnchides comments aod whiteepace
172.magrid F77 0.5 56 56.7 Multigrid solver: 3D potential field SPEC CPU 7,000
173.applu F77 7.9 181 191 Partial differential equations . - 6,000
177.mesa c 81.8 95 247 3D graphics library Suite Growth

178.galgel F90 14.1 63 155 Computational fluid dynamics Updated 4/2017 | 5,000
179.art G 1.2 3.7 59 Image recognition/neural networks Cit | 4,000
183.equake G 1.2 49 511 Seismic wave propagation simulation oc

187 facerec Fa0 2.4 16 18.5 Image processing: Face recognition ® Fortran I 3,000
188.ammp C 12.9 26 30 Computational chemistry | 2,000
189.lucas F90 2.8 142 143 Number theory/primality testing

191.fma3d Fa0 59.8 103 105 Finite-element crash simulation 1,000
200.sixtrack F77 471 26 59.8 Muclear physics accelerator design

301.apsi F77 6.4 19 192 Meteorology: Pollutant distribution CPUSHY CPU92 CPUSS cpuiooo CPU2006 cpuzoon'

SPEC CPU2006 required 1 GB of physical memory, CPU2017 requires 16 GB

Source: https://www.spec.org/cpu2017/Docs/overview.html#Q19, © SPEC 2017

SPECspeed 2017
on Intel Xeon E5-2650L 1.8 GHz

Execution | Reference
Instruction Clock cycle time Time Time
Description Count x 10° (seconds x 10-°) | (seconds) | (seconds) | SPECratio
Perl interpreter perlbench 2684 0.42 0.556 627 1774 2.83
GNU C compiler gce 2322 0.67 0.556 863 3976 4.61
Route planning mcf 1786 1.22 0.556 1215 4721 3.89
Discrete Event simulation - | omnetpp 1107 0.82 0.556 507 1630 3.21
computer network
XML to HTML xalancbmk 1314 0.75 0.556 549 1447 2.58
conversion via XSLT
Video compression X264 4488 0.32 0.556 813 1763 2.17
Artificial Intelligence:
alpha-beta tree deepsjeng 2216 0.57 0.556 698 1432 2.05
search (Chess)
Artificial Intelligence:
Monte Carlo tree leela 2236 0.79 0.556 987 1703 1.73
search (Go)
Artificial Intelligence:
recursive solution exchange? 6683 0.46 0.556 1718 2939 1.71
generator (Sudoku)
General data Xz 8533 1.32 0.556 6290 6182 0.98
compression
Geometric mean - - - - - - 2.36

Source: Patterson & Hennessy, © MK 2021

Summary

Performance measurement is all but easy: many heterogeneous
parameters come into the picture

What really matters most for a user is the elapsed time on an unloaded
system

CPI and IPC help relate hardware features of the processor to
performance, but there are many pitfalls, hidden dependencies, “second-
order” effects...

Benchmarks are the only practical way to assess performance—and
serious unbiased benchmarks are difficult to design

References

e Patterson & Hennessy, COD — RISC-V Edition
— Section 1.6, 1.9, and 1.11

	CS-200�Computer Architecture�—�Part 4a. Instruction Level Parallelism�Performance
	Remember?
	So Far about Performance…
	What is “Performance”?
	Elapsed Time, CPU Time,…
	Elapsed Time, CPU Time,…
	Relative Performance
	Relate Performance �to Hardware Implementation
	Improving Performance?
	Many Other Considerations �Influence the Performance
	What to Improve to Increase Performance?
	Benchmarks
	SPEC CPU2006 Integer
	SPEC CPU2006 Floating Point
	SPEC CPU2017 Speed and Rate
	SPEC CPU2000 Example�Complete and Complex Programs
	SPECspeed 2017 �on Intel Xeon E5-2650L 1.8 GHz
	Summary
	References

