
1

CS-200
Computer Architecture

—
Part 4a. Instruction Level Parallelism

Performance

Paolo Ienne
<paolo.ienne@epfl.ch>

2

Remember?

So
ur

ce
: H

en
ne

ss
y

&
 P

at
te

rs
on

, ©
 M

K
20

11

Architecture!

~20% / year:

technology
(= transistor speed)

~50% / year:

processor
performance

3

So Far about Performance…

• Different parts of a system do not benefit equally from
manufacturing technology advances

– Memories are “slower and slower”  Caches

• We have done nothing to speed-up the processor itself

4

What is “Performance”?

• Processor frequency?
– Is it better an Intel Core i7-7700K at 4.2 GHz or an AMD Ryzen 5 5600X at 3.7 GHz?

And how much better the best one is?

• Memory speed? Cache efficiency?
– Is it better to have 8 MiB of 4-way set-associative cache or 16 MiB of direct

mapped cache?
– Is it better to have three levels of overall smaller caches or two levels of overall

bigger caches?

We need a metric!

5

Elapsed Time, CPU Time,…

None of the above matters in itself
• What matters is how long it takes to perform a job a user needs!

[110]icvm0100> time latex mypaper >& /dev/null
0.79u 0.17s 0:01.20 80.0%
[111]icvm0100>

My job
OS command to

inquire about execution time

User CPU Time: The processor has spent 0.79s executing
instructions of my program (latex)

System CPU Time: The processor has spent 0.17s executing
instructions of the operating system on behalf of my program

Elapsed Time: 1.20s after I started it, my job was completed

6

Elapsed Time, CPU Time,…
[110]icvm0100> time latex mypaper >& /dev/null
0.79u 0.17s 0:01.20 80.0%
[111]icvm0100>

We are interested in

Elapsed Time on an Unloaded System

Often simply “Execution Time” for brevity…

80% of the Elapsed Time (= 0.96s/1.20s)
has been spent on my job:

system I/O, other jobs, other users,…
User CPU Time + System CPU Time ≠ Elapsed Time:

The processor has spent 0.96s executing for me
but the result took 1.20s to become ready

7

Relative Performance

• Speedup
– How faster system X is compared to system Y

• Common Performance Indices
– Speedups of systems compared to a single standard system
– SPEC CPU, Geekbench, Cinebench, and LinPack HPL, EEMBC (“Embassy”) CoreMark

X

Y

Y

X

TimeExecution
TimeExecution

ePerformanc
ePerformancSpeedup ==

The classic CPU benchmark
Dedicated to embedded processors

8

Relate Performance
to Hardware Implementation

• In hardware, our measure of time is the clock period or cycle
• We are often interested to relate the execution time to this “hardware quantum”
• Cycles per Instruction (CPI)

– Average number of cycles per instruction executed

• Instructions per Cycle (IPC)  1 / CPI
– Average instructions executed per cycle
– Normally below unity, unless the processor executes several instructions in parallel

()CountnInstructioTotal
PeriodClock

TimeExecutionCPI 







=

9

Improving Performance?

• Performance being 1/Execution Time, rewriting the definition of CPI and IPC:

CountnInstructio
IPCf

CPICountnInstructio
f

TimeExecution
ePerformanc

clockclock ⋅
=

⋅
=

==
1

Implement the processor
in a fast technology 

Execute several
instructions in parallel 

Use fewer complex instructions (CISC)?
But then we need more cycles per
instruction or a slower clock… 

Make instructions simple so that we can
have less CPI or a faster clock (RISC)?

But then we need more instructions for the
same job… 

1
0

Many Other Considerations
Influence the Performance

A few random examples:
• Instruction Count depends also from the compiler

– It is more important to have an instruction-set which a compiler can use very effectively (best
instructions for the required job) rather than a “reduced” or a “complex” instruction-set—otherwise
the instruction count will be larger than needed…

• CPI depends on the cache performance
– If the overall code size grows, the cache will be less effective (more misses)…

• Very fast clock cycles will require more often instructions from the memory
– Performance of the cache becomes more critical…

1
1

What to Improve to Increase Performance?

• Amdahl’s Law (law of diminishing returns)
– The performance enhancement possible with a given improvement is limited by the amount the

improved feature is used

• Typical software situation:
– If a program spends 20% of the time in subroutine X, the maximum reduction in execution time one

can get from optimising X is 20%, that is a speedup of 1/(1 - 0.2) = 1.25x

• In a processor:
– If the instruction Y is used 0.1% of the time, is it worth to make it faster? It is probably better to look

for the instruction which is used 20% of the time…

Look for where most of the time goes!

1
2

Benchmarks

• Performance indices such as SPEC CPU, Geekbench, Cinebench, and
LinPack HPL, EEMBC (“Embassy”) CoreMark need a precise definition of
the user job(s) to run

• Serious benchmark suites are collections of large and representative user
programs spanning all areas of typical use, often agreed between
manufacturers

• They do not only define the programs (in C, C++, FORTRAN, Java), but also
how to compile them, what data to run them on, etc.

1
3

SPEC CPU2006 Integer

• Reference Time (RT) measured on a Sun Ultra 5 + 300MHz UltraSPARC III +
256KB L2 cache  100 SPEC2000

• Note the complexity of the benchmark: 36.6 hrs and 88.3 hrs of runtime
(on a relatively old machine) for Int and FP respectively

So
ur

ce
: M

ic
ro

pr
oc

es
so

r
Re

po
rt

, ©
 C

ah
ne

rs
20

07

1
4

SPEC CPU2006 Floating Point

So
ur

ce
: M

ic
ro

pr
oc

es
so

r
Re

po
rt

, ©
 C

ah
ne

rs
20

07

1
5

SPEC CPU2017 Speed and Rate

So
ur

ce
: M

ic
ro

pr
oc

es
so

r
Re

po
rt

, ©
 T

he
 L

in
le

y
G

ro
up

20
17

SPECspeed
Measures the completion time

of a task (latency test)

SPECrate
Measures the number of tasks performed in

the unit of time (throughput test)

1
6

SPEC CPU2000 Example
Complete and Complex Programs

So
ur

ce
: C

om
pu

te
r,

©
 IE

EE
20

00

SPEC CPU2006 required 1 GB of physical memory, CPU2017 requires 16 GB

So
ur

ce
: h

tt
ps

:/
/w

w
w

.s
pe

c.
or

g/
cp

u2
01

7/
Do

cs
/o

ve
rv

ie
w

.h
tm

l#
Q

19
, ©

 S
PE

C
20

17

1
7

SPECspeed 2017
on Intel Xeon E5-2650L 1.8 GHz

So
ur

ce
: P

at
te

rs
on

 &
 H

en
ne

ss
y,

©
 M

K
20

21

1
8

Summary

• Performance measurement is all but easy: many heterogeneous
parameters come into the picture

• What really matters most for a user is the elapsed time on an unloaded
system

• CPI and IPC help relate hardware features of the processor to
performance, but there are many pitfalls, hidden dependencies, “second-
order” effects…

• Benchmarks are the only practical way to assess performance—and
serious unbiased benchmarks are difficult to design

1
9

References

• Patterson & Hennessy, COD – RISC-V Edition
– Section 1.6, 1.9, and 1.11

	CS-200�Computer Architecture�—�Part 4a. Instruction Level Parallelism�Performance
	Remember?
	So Far about Performance…
	What is “Performance”?
	Elapsed Time, CPU Time,…
	Elapsed Time, CPU Time,…
	Relative Performance
	Relate Performance �to Hardware Implementation
	Improving Performance?
	Many Other Considerations �Influence the Performance
	What to Improve to Increase Performance?
	Benchmarks
	SPEC CPU2006 Integer
	SPEC CPU2006 Floating Point
	SPEC CPU2017 Speed and Rate
	SPEC CPU2000 Example�Complete and Complex Programs
	SPECspeed 2017 �on Intel Xeon E5-2650L 1.8 GHz
	Summary
	References

