
CS-200 Computer Architecture

Part 4a. Instruction Level Parallelism Performance

Paolo lenne <paolo.ienne@epfl.ch>

Remember?

So Far about Performance...

 Different parts of a system do not benefit equally from manufacturing technology advances

Memories are "slower and slower" → Caches

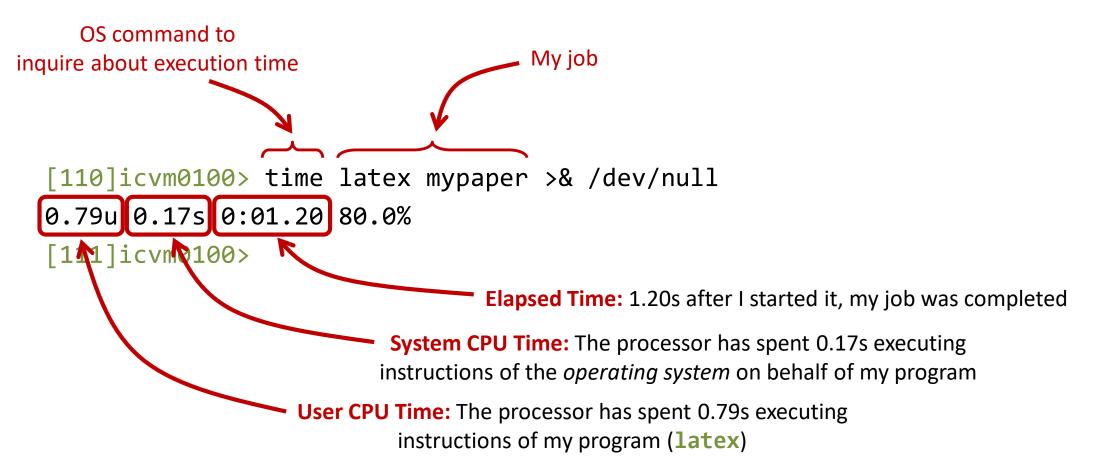
We have done nothing to speed-up the processor itself

What is "Performance"?

Processor frequency?

— Is it better an Intel Core i7-7700K at 4.2 GHz or an AMD Ryzen 5 5600X at 3.7 GHz?
And how much better the best one is?

Memory speed? Cache efficiency?


- Is it better to have 8 MiB of 4-way set-associative cache or 16 MiB of direct mapped cache?
- Is it better to have three levels of overall smaller caches or two levels of overall bigger caches?

We need a metric!

Elapsed Time, CPU Time,...

None of the above matters in itself

What matters is how long it takes to perform a job a user needs!

Elapsed Time, CPU Time,...

[110]icvm0100> time latex mypaper >& /dev/null 0.79u 0.17s 0:01.20 80.0% ← [111]icvm(100>

80% of the Elapsed Time (= 0.96s/1.20s) has been spent on my job:

system I/O, other jobs, other users,...

User CPU Time + System CPU Time ≠ Elapsed Time:

The processor has spent 0.96s executing for me but the result took 1.20s to become ready

We are interested in

Elapsed Time on an Unloaded System

Often simply "Execution Time" for brevity...

Relative Performance

Speedup

How faster system X is compared to system Y

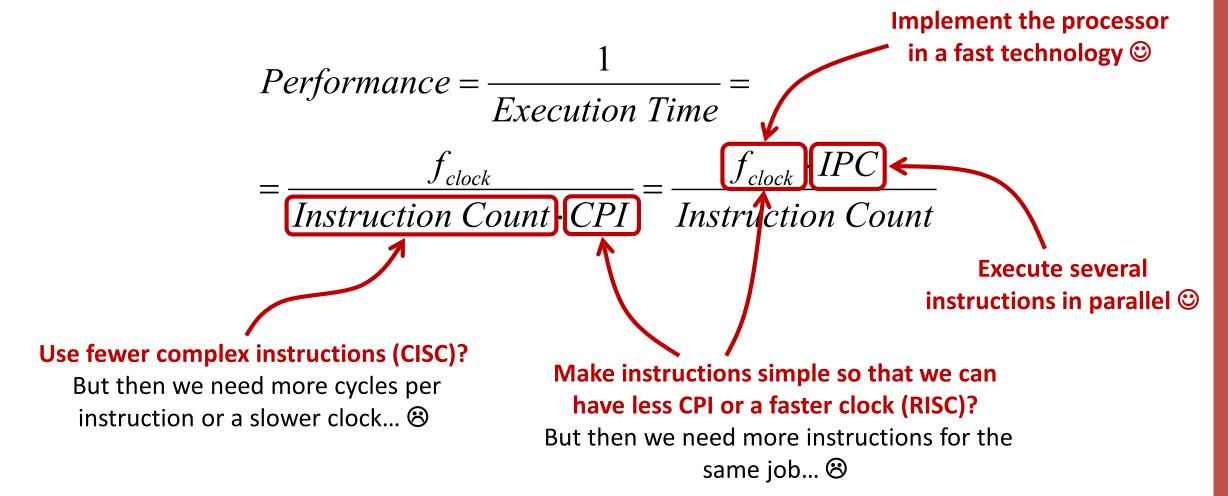
$$Speedup = \frac{Performance_X}{Performance_Y} = \frac{Execution \ Time_Y}{Execution \ Time_X}$$

Common Performance Indices

- Speedups of systems compared to a single standard system
- SPEC CPU, Geekbench, Cinebench, and LinPack HPL, EEMBC ("Embassy") CoreMark

The classic CPU benchmark

Relate Performance to Hardware Implementation


- In hardware, our measure of time is the clock period or cycle
- We are often interested to relate the execution time to this "hardware quantum"
- Cycles per Instruction (CPI)
 - Average number of cycles per instruction executed

$$CPI = \left(\frac{Execution\ Time}{Clock\ Period}\right) / (Total\ Instruction\ Count)$$

- Instructions per Cycle (IPC) ← 1 / CPI
 - Average instructions executed per cycle
 - Normally below unity, unless the processor executes several instructions in parallel

Improving Performance?

• Performance being 1/Execution Time, rewriting the definition of CPI and IPC:

Many Other Considerations Influence the Performance

A few random examples:

- Instruction Count depends also from the compiler
 - It is more important to have an instruction-set which a compiler can use very effectively (best instructions for the required job) rather than a "reduced" or a "complex" instruction-set—otherwise the instruction count will be larger than needed...
- CPI depends on the cache performance
 - If the overall code size grows, the cache will be less effective (more misses)...
- Very fast clock cycles will require more often instructions from the memory
 - Performance of the cache becomes more critical...

What to Improve to Increase Performance?

- Amdahl's Law (law of diminishing returns)
 - The performance enhancement possible with a given improvement is limited by the amount the improved feature is used
- Typical software situation:
 - If a program spends 20% of the time in subroutine X, the maximum reduction in execution time one can get from optimising X is 20%, that is a speedup of 1/(1 0.2) = 1.25x
- In a processor:
 - If the instruction Y is used 0.1% of the time, is it worth to make it faster? It is probably better to look for the instruction which is used 20% of the time...

Look for where most of the time goes!

Benchmarks

- Performance indices such as SPEC CPU, Geekbench, Cinebench, and LinPack HPL, EEMBC ("Embassy") CoreMark need a precise definition of the user job(s) to run
- Serious benchmark suites are collections of large and representative user programs spanning all areas of typical use, often agreed between manufacturers
- They do not only define the programs (in C, C++, FORTRAN, Java), but also how to compile them, what data to run them on, etc.

SPEC CPU2006 Integer

	CPU2000			CPU2006			
Benchmark Description	Integer	Lng	RT	Integer	Lng	RT	
GNU C compiler	176.gcc	C	1,100	403.gcc	C	8,050	
Manipulates strings & prime numbers in Perl language	253.perlbmk	C	1,800	400.perfbench	C	9,766	
Minimum cost network flow solver (combinatorial optimization)	181.mcf	С	1,800	429.mcf	C	9,120	
Data compression utility	256.bzip2	C	1,500	401.bzip2	C	9,644	
Data compression utility	164.gzip	C	1,400				
Video compression & decompression				464.h264ref	U	22,235	
Artificial intelligence, plays game of Chess	186.crafty	C	1,000	458.sjeng	C	12,141	
Artificial intelligence, plays game of Go				445.gobmk	C	10,489	
Artificial intelligence used in games for finding 2D paths across terrains				473.astar	C++	7,017	
Natural language processing	197.parser	C	1,800				
XML processing				483.xalancbmk	C++	6,869	
FPGA circuit placement and routing	175.vpr	C	1,400				
EDA place and route simulator	300.twolf	C	3,000				
Search gene sequence				456.hmmer	C	9,333	
Ray tracing	252.eon	C++	1,300				
Computational group theory	254.gap	C	1,100				
Database program	255.vortex	С	1,900				
Library for simulating a quantum computer				462.libquantum	C	20,704	
Discrete event simulation				471.omnetpp	C++	6,270	
	hours	5.3	19,100	hours	36.6	131,638	

- Reference Time (RT) measured on a Sun Ultra 5 + 300MHz UltraSPARC III + 256KB L2 cache → 100 SPEC2000
- Note the complexity of the benchmark: 36.6 hrs and 88.3 hrs of runtime (on a relatively old machine) for Int and FP respectively

SPEC CPU2006 Floating Point

	CPL	J2000		CPU2006		
Benchmark Description	Floating Pnt	Lng	RTime	Floating Pnt	Lng	RTime
Weather prediction, shallow water model	171.swim	F77	3,100			
Velocity & distribution of pollutants based on temperature, wind	301.apsi	F77	2,600			
Weather modeling (30km area over 2 days)	·			481.wrf	C/F	11,215
Physics, particle accelerator model	200.sixtrack	F77	1,100			
Parabolic/elliptic partial differential equations	173.applu	F77	2,100			
Multi-grid solver in 3D potential field	172.mgrid	F77	1,800			
General relativity, solves Einstein evolution equations				436.cactusADM	C/F	11,927
Computational electromagnetics (solves Maxwell equations in 3D)				459.GemsFDTD	F	10,583
Quantum chromodynamics	168.wupwise	F77	1,600			
Quantum chromodynamics, gauge field generation with dynamical quarks				433.milc	C	9,180
Fluid dynamics, analysis of oscillatory instability	178.galgel	F90	2,900			
Fluid dynamics, computes 3D transonic transient laminar viscous flow				410.bwaves	F	13,592
Computational fluid dynamics for simulation of astrophysical phenomena				434.zeusmp	F	9,096
Fluid dynamics, large eddy simulations with linear-eddy model in 3D				437.leslie3d	F	9,358
Fluid dynamics, simulates incompressible fluids in 3D				470.lbm	С	13,718
Molecular dynamics (simulations based on newtonian equations of motion)				435.gromacs	C/F	7,132
Biomolecular dynamics, simulates large system with 92,224 atoms				444.namd	C++	8,018
Computational chemistry	188.ammp	С	2,200			
Quantum chemistry package (object-oriented design)				465.tonto	F	9,822
Quantum chemistry, wide range of self-consistent field calculations				416.gamess	F	19,575
Computer vision, face recognition	187.facerec	F90	1,900			
Speech recognition system				482.sphinx3	C	19,528
3D graphics library	177.mesa	С	1,400			
Neural network simulation (adaptive resonance theory)	179.art	С	2,600			
Earthquake modeling (finite element simulation)	183.equake	C	1,300			
Crash modeling (finite element simulation)	191.fma3d	F90	2,100			
Number theory (testing for primes)	189.lucas	F90	2,000			
Structural mechanics (finite elements for linear & nonlinear 3D structures)				454.calculix	C/F	8,250
Finite element analysis (program library)				447.dealII	C++	11,486
Linear programming optimization (railroad planning, airlift models)				450.soplex	C++	8,338
Image ray tracing (400x400 anti-aliased image with abstract objects)				453.povray	C++	5,346
	hours	8.0	28,700	hours	52	186,164
	hours	13.3	47.810	hours	88.3	317.802

SPEC CPU2017 Speed and Rate

SPECspeed	SPECrate	Language	Application
600.perlbench s	500.perlbench r	С	Perlinterpreter Perlinterpreter
602.gcc_s	502.gcc_r	С	Gnu C compiler
605.mcf s	505.mcf r	С	Route planning
620.omnetpp_s	520.omnetpp_r	C++	Discrete eventsimulation—computer N/W
623.xalancbmk s	523.xalancbmk r	C++	XML-to-HTML conversion via XSLT
625.x264_s	525.x264_r	С	Video compression
631.deepsieng s	531.deepsieng r	C++	AI: alpha-beta tree search (Chess)
641.leela s	541.leela r	C++	AI: Monte Carlo tree search (Go)
648.exchange2_s	548.exchange2_r	Fortran	AI: recursive solution generator (Sudoku)
657.xz_s*	557.xz_r	С	General data compression
603.bwaves s	503.bwaves r	Fortran	Explosion modeling
607.cactuBSSN s	507.cactuBSSN r	C++, C, Fortran	Physics: relativity
Not applicable†	508.namd_r	C++	Molecular dynamics
Not applicable†	510.parest_r	C++	Biomedical imaging: optical tomography
Not applicable†	511.povray r	C++, C	Ray tracing
619.lbm_s	519.lbm_r	С	Fluid dynamics
621.wrf_s	521.wrf_r	Fortran, C	Weather forecasting
Not applicable†	526.blender r	C++, C	3D rendering and animation
627.cam4 s	527.cam4 r	Fortran. C	Atmosphere modeling
628.pop2 s	Not applicable‡	Fortran, C	Wide-scale ocean modeling (climate level)
638.imagick_s	538.imagick_r	С	Image manipulation
644.nab s	544.nab r	С	Molecular dynamics
649.fotonik3d s	549.fotonik3d r	Fortran	Computational electromagnetics
654.roms_s	554.roms_r	Fortran	Regional ocean modeling

Measures the completion time of a task (latency test)

SPECrate

Measures the number of tasks performed in the unit of time (throughput test)

Source: https://www.spec.org/cpu2017/Docs/overview.html#Q19, © SPEC 2017

SPEC CPU2000 Example Complete and Complex Programs

Benchmark	Language	KLOC	Resident size (Mbytes)	Virtual size (Mbytes)	Description
SPECint2000					
164.gzip	С	7.6	181	200	Compression
175.vpr	С	13.6	50	55.2	FPGA circuit placement and routing
176.gcc	С	193.0	155	158	C programming language compiler
181.mcf	С	1.9	190	192	Combinatorial optimization
186.crafty	С	20.7	2.1	4.2	Game playing: Chess
197.parser	С	10.3	37	62.5	Word processing
252.eon	C++	34.2	0.7	3.3	Computer visualization
253.perlbmk	С	79.2	146	159	Perl programming language
254.gap	С	62.5	193	196	Group theory, interpreter
255.vortex	С	54.3	72	81	Object-oriented database
256.bzip2	С	3.9	185	200	Compression
300.twolf	С	19.2	1.9	4.1	Place and route simulator
SPECfp2000					
168.wupwise	F77	1.8	176	177	Physics: Quantum chromodynamics
171.swim	F77	0.4	191	192	Shallow water modeling
172.mgrid	F77	0.5	56	56.7	Multigrid solver: 3D potential field
173.applu	F77	7.9	181	191	Partial differential equations
177.mesa	С	81.8	9.5	24.7	3D graphics library
178.galgel	F90	14.1	63	155	Computational fluid dynamics
179.art	С	1.2	3.7	5.9	Image recognition/neural networks
183.equake	С	1.2	49	51.1	Seismic wave propagation simulation
187.facerec	F90	2.4	16	18.5	Image processing: Face recognition
188.ammp	С	12.9	26	30	Computational chemistry
189.lucas	F90	2.8	142	143	Number theory/primality testing
191.fma3d	F90	59.8	103	105	Finite-element crash simulation
200.sixtrack	F77	47.1	26	59.8	Nuclear physics accelerator design
301.apsi	F77	6.4	191	192	Meteorology: Pollutant distribution

SPEC CPU
Suite Growth
Updated 4/2017

C++
C
Fortran

Lines of source x 1000
Includes comments and whitespace
7,000

6,000

5,000

4,000

3,000

1,000

CPU2000

CPU2006

CPU2017

CPU92

CPU95

SPEC CPU2006 required 1 GB of physical memory, CPU2017 requires 16 GB

SPECspeed 2017 on Intel Xeon E5-2650L 1.8 GHz

Description	Name	Instruction Count x 10 ⁹	СРІ	Clock cycle time (seconds x 10 ⁻⁹)	Execution Time (seconds)	Reference Time (seconds)	SPECratio
Perl interpreter	perlbench	2684	0.42	0.556	627	1774	2.83
GNU C compiler	gcc	2322	0.67	0.556	863	3976	4.61
Route planning	mcf	1786	1.22	0.556	1215	4721	3.89
Discrete Event simulation - computer network	omnetpp	1107	0.82	0.556	507	1630	3.21
XML to HTML conversion via XSLT	xalancbmk	1314	0.75	0.556	549	1417	2.58
Video compression	x264	4488	0.32	0.556	813	1763	2.17
Artificial Intelligence: alpha-beta tree search (Chess)	deepsjeng	2216	0.57	0.556	698	1432	2.05
Artificial Intelligence: Monte Carlo tree search (Go)	leela	2236	0.79	0.556	987	1703	1.73
Artificial Intelligence: recursive solution generator (Sudoku)	exchange2	6683	0.46	0.556	1718	2939	1.71
General data compression	XZ	8533	1.32	0.556	6290	6182	0.98
Geometric mean	-	_	-	-	_	_	2.36

Summary

- Performance measurement is all but easy: many heterogeneous parameters come into the picture
- What really matters most for a user is the elapsed time on an unloaded system
- CPI and IPC help relate hardware features of the processor to performance, but there are many pitfalls, hidden dependencies, "secondorder" effects...
- Benchmarks are the only practical way to assess performance—and serious unbiased benchmarks are difficult to design

References

- Patterson & Hennessy, COD RISC-V Edition
 - Section 1.6, 1.9, and 1.11